通过界面电荷耦合设计的石墨烯中的量子霍尔相
在一些固态系统中,量子霍尔效应(QHE)表现出拓扑保护的耗散较少的边缘通道,其横向电导由 e2/h 量化。这种奇特的行为是至关重要的。在为数不多的表现出QHE的系统中,石墨烯因其独特的带状结构和在磁场中产生能量而受到特别关注。已知界面耦合会影响石墨烯的QHE,通常有两种不同的方式:电荷杂质会导致移动性降低,在某些情况下会有更宽的量子霍尔(QH)平台,以及电荷转移,在某种程度上会转移有效掺杂。理论预测,反铁磁绝缘体和石墨烯之间的相互作用可以产生拓扑量子基态,如量子反常霍尔相。在实验中,RuCl 3/石墨烯确实被发现有强烈的电荷转移,这有时可能与磁力耦合,而有时没有完全证明。因此,对这种相互作用的基础物理学和可控工程的理解仍然具有挑战性。
基于以上挑战,山西大学光电研究所韩拯教授和北京大学叶堉副教授、上海科技大学刘健鹏研究员、中国科学院半导体研究所常凯院士合作展示了在石墨烯样品与配备双门的反铁磁绝缘体CrOCl接触时观察到的不寻常的量子霍尔效应,该效应与已知的图片有明显的区别。开发了两种不同的量子霍尔相,单层石墨烯中的朗道级在常规相中保持完好,但在界面耦合相中很大成都上失真。后一个量子霍尔相甚至在接近没有磁场的情况下也存在,随之而来的朗道量子化在位移场和磁场之间遵循抛物线关系。相关成果以“Quantum Hall phase in graphene engineered by interfacial charge coupling”为题发表在《 Nature Nanotechnology》上。
将单层石墨烯、薄的CrOCl片和封装的h-BN薄片剥离出来,并在环境条件下使用干式转移法进行堆叠。然后将范德瓦尔斯异质结构图案化为霍尔条,其电极边缘接触。如图1a所示,h-BN-石墨烯-CrOCl样品的场效应曲线(红色曲线)与传统的h-BN-石墨烯-h-BN样品(蓝色曲线)不同,迪拉克峰消失,栅极可调性下降(配置见图1a插图)。图1b是CrOCl的晶体结构。作者首先从单门控器件开始,发现发生了强界面耦合,并影响了石墨烯中的实际掺杂,表现出与传统门电介质中预期的掺杂有很大的差异。图1c显示了一个典型的h-BN-石墨烯-CrOCl器件的光学图像,其结构图见图1d。图1e中给出了在T = 3 K时获得的双门电阻图。可以看到三个明显的区域,每个区域都被一个电阻峰隔开,并被标记为空穴或电子掺杂,这是由下面讨论的高磁场下的测量决定的。
图1 CrOCl负载石墨烯的表征
图2a显示了沿孔侧固定载流子密度的Rxy的磁场扫描,(图2b中的红色虚线)。可以看到填充分数(即LLs)与D eff的相关性很小。这是单层石墨烯的标准行为,因为没有Z维,因此位移场在LLs中不起作用。令人震惊的是,如图2c所示,沿n tot≈+1.8 × 10 12 cm -2的横向电阻Rxy的磁场扫描(图2b中的绿色虚线)与图2a相比,表现出截然不同的模式。如图2c所示,这允许人们在D eff≈0.8 V nm -1时达到电子侧,如图2d中Rxx和Rxy在12T时的线型所示。在这个系统中,Rxy在一个极宽的参数空间中被量化。图2e显示了在B =14 T和T =3 K时,D aff = 0.35 V nm -1(沿图2b中的黄色虚线)的Rxx和Rxy的线型。可以看出,在空穴侧,朗道量化与在传统单层石墨烯中观察到的一致。在图2f的放大窗口中,可以看到从ν=-2到-10的每个整数填充分数的完全退行性解除。通过改变D = 0.35 V nm -1的磁场,作者得到了B和n tot参数空间的颜色图(图2g)。可以看出,强界面耦合导致了朗道量化的变化,从众所周知的扇形行为变为级联行为。
图 2 QH 状态下的栅极可调 强界面耦合
作者将载流子类型从空穴切换到电子的位移场定义为D中性,因此D轴被重新规范为δD = D – D中性。如图3a,b所示(分别为Rxx和Rxy),量化的区域触及B=0T线,在零磁场附近仍然存在一个微小的宽度。作者在这里取δD = -0.08 V nm-1(由图3b中的白色虚线表示),并绘制了Rxx和Rxy(图3c)。虽然在石墨烯系统中声称存在量子反常霍尔效应(QAHE)或切尔恩绝缘体,但作者的装置与h-BN-单层石墨烯-CrOCl异质结构在磁场完全不存在时似乎是微不足道的。在很低的B下观察到的Rxy量化仍然处于QH状态,因为ν=±2的量化是从狄拉克电子继承的,在作者系统的磁扫描的跟踪-追溯环中没有看到磁滞(图3c)。值得注意的是,石墨烯/CrOCl异质结构中这种强大的强界面耦合-QHE相在更高的温度下也很普遍(图3c插图)。通过提取图3a中Rxx在B=-1T时的线型,在每个LL上发现了电阻峰,如图3d中的红点所示。作者发现,每个电阻峰的δD值与N-√呈线性关系,N为第N个LL,如图3e所示。这是传统单层石墨烯中典型的朗道量子化能量依赖。
图 3石墨烯-CrOCl 异质结构中 强界面耦合-QHE 相的特征
在图4a中可以看到两个关键特征。首先,当系统从传统相进入强界面耦合相时,CNP是弯曲的。第二,随着系统进入强界面耦合相的深入,每条等掺线的间距都在增加。作者制作了一个模型,通过评估该模型,作者发现这两个主要特征可以很好地再现,如图4b的相图所示。作者绘制了一个示意性的相图(图4c),为了简单起见,传统相和强界面耦合相分别表示为相(i)和相(ii)。两个不同的路径被用来说明作者系统中的掺杂过程。在路径a中,石墨烯开始处于空穴掺杂状态(图4d中的状(1))。它穿过CNP,成为电子掺杂,并接近相界,在这个相界上,石墨烯的费米水平接触到CrOCl中界面带的最低能量(图4e中的状态(2)),从而引发了界面带中的电子填充事件,形成了电荷秩序。后者对石墨烯中的狄拉克电子施加了一个长波长的库仑超晶格电位。因此,在石墨烯中的电子相互作用的驱动下,费米速度明显增强(图4f中的状态(3))。在进一步降低Deff时,该系统再次成为空穴掺杂。一个类似的过程可以解释为路径b(图4h-j)。
图 4Deff-ntot 空间中的 QH 相图和相间的转换过程
上述结果清楚地表明,就工程量子电子态而言,界面电荷耦合是一种强大的技术,而现在研究人员迄今为止可能已经忽略了这一点。为便于比较,图5总结了最近报道的典型的不同QHEs或QAHE系统中实现量化霍尔电导所需的磁场和温度。
图 5:强界面耦合-QHE 阶段的前景
小结:总之,作者展示了一个石墨烯-CrOCl的混合系统,其中由于奇特的栅极可调谐的界面耦合,观察到了一个奇特的QHE阶段。在有限的磁场和恒定的Deff下,可以看到从扇形到级联的Landau量化的交叉。另外,在D-B空间,与传统的D-无关的空间不同,强界面耦合-QHE相中的LLs在0到1013 cm-2的有效掺杂范围内,在B和Deff之间表现出抛物线依赖性。作者的理论分析自洽地将这一观察到的现象的物理起源归结为CrOCl中界面状态的长波长电荷秩序的形成以及随后在石墨烯中的带状重建。作者的发现似乎为QH相的工程化打开了一扇新的大门,并可能为未来通过界面电荷耦合操纵量子电子态提供启示,例如构建新型拓扑超导体,以及建立量子计量标准。
来源:高分子科学前沿
声明:仅代表作者个人观点,作者水平有限,如有不科学之处,请在下方留言指正!
山西大学研究生(山西大学研究生院)
评论列表 人参与