2023年考研数学大纲解析:一元函数微分学

2023年考研数学大纲解析:一元函数微分学



  9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息-2016年考…

2023年考研数学大纲解析:一元函数微分学

  9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息-2016年考研大纲正式发布,下面按章节来分析大纲的要求以及复习该章节的重点:


  一、大纲要求:一元函数微分学
  1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
  2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
  3、了解高阶导数的概念,会求简单函数的高阶导数。
  4、会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
  5、理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
  6、掌握用洛必达法则求未定式极限的方法。
  7、理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
  8、会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导。.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
  9、(数一、数二)了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。


  二、复习重点
  本部分的重点归纳起来有四方面:
  基本概念方面:导数的定义,特别掌握利用导数的定义讨论分段函数在分段点的可导性。
  理论方面:重点是罗尔定理,拉格朗日定理,会通过引入辅助函数,证明中值定理。辅助函数的构造技巧性较强,能从所需证明的结论及其变形出发构造函数,要特别注意与函数的单调性和介值定理结合起来的证明题。
  计算方面:重点是基本初等函数的导数,微分公式,四则运算的导数、微分公式以及反函数和隐函数的求导公式。
  应用方面:重点是利用导数研究函数的性态,数一、数二注意物理方面的应用,数三注意解决经济问题。


  通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。最后祝同学们,金榜题名。
 

2023年考研数学大纲解析:一元函数微分学

    关于作者: admin

    这里可以再内容模板定义一些文字和说明,也可以调用对应作者的简介!或者做一些网站的描述之类的文字活着HTML!

    为您推荐

    发表评论

    电子邮件地址不会被公开。 必填项已用*标注

    评论列表 人参与

    联系我们

    联系我们

    8888-88888888

    在线咨询: QQ交谈

    邮箱: email@admin.com

    工作时间:周一至周五,9:00-17:30,节假日休息

    关注微信
    微信扫一扫关注我们

    微信扫一扫关注我们

    关注微博
    返回顶部