2023考研数学:绝技一朝在手,极限永远不愁

2023考研数学:绝技一朝在手,极限永远不愁



  摘要:众所周知,函数求极限是高等数学中最基础的内容,并且是每年考研数学的必考内容。所以各位考生一…

2023考研数学:绝技一朝在手,极限永远不愁

  摘要:众所周知,函数求极限是高等数学中最基础的内容,并且是每年考研数学的必考内容。所以各位考生一定要将极限问题琢磨透了,才能保证在这类考察基础知识的题目上不丢分。

 


  有的题目是以直接求极限的形式出现,例如2011年数学一的15题:求极限;也有的题目是间接涉及到求极限问题,例如2012年数学一的1题是要求曲线渐近线的条数,求曲线渐进线最终还是通过求函数极限来达到的。这两类题目在历年考研数学试题中出现的频率都很高,求极限的方法一定要熟记于心、熟练掌握,不可轻视!
  求极限的方法不只限于两三种,概括来讲共有下面八大“必杀技”需要掌握:

  定义法
  此法一般用于极限的证明题,计算题很少用到,但仍应熟练掌握,不重视基础知识、基本概念的掌握对整个复习过程都是不利的。

  洛必达法则
  此法适用于解“”型和“”型等不定式极限,但要注意适用条件(不只是使用洛必达法则要注意这点,数学本身是逻辑性非常强的学科,任何一个公式、任何一条定理的成立都是有使其成立的前提条件的,不能想当然的随便乱用),如出现的极限是形如,则都可以转化为型来求解。

  对数法
  此法适用于指数函数的极限形式,指数越是复杂的函数,越能体现对数法在求极限中的简便性,计算到最后要注意代回以e为底,不能功亏一篑。

  定积分法
  此法适用于待求极限的函数为或者可转化为无穷项的和与一个分数单位之积,且这无穷项为等差数列,公差即为那个分数单位。

  泰勒展开法
  待求极限函数为分式,且用其他方法都不容易简化时使用此法会有意外收获。当然这要求考生能熟记一些常见初等函数的泰勒展开式且能快速判断题目是否适合用泰勒展开法,坚持平时多记多练,这都不是难事。


  等价替换法
  此法能快速简化待求极限函数的形式,也需要考生熟记一些常用的等价关系,才能保证考试时快速准确地解题。注意等价替换只能替换乘除关系的式子,加减关系的不可替换。

  放缩法(夹逼定理)
  此法较简单,就是对待求极限的函数进行一定的扩大和缩小,使扩大和缩小后的函数极限是易求的,例如《2013考研数学接力题典1800》第4页的56题:求极限,该题即是用放缩法求解,具体解法可参见书内答案。

  重要极限法
高数中的两个重要极限:及其变形要熟记并学会应用。
  掌握了以上八大方法还是不够的,要学会融会贯通,因为考研题的综合性很强,不是一道题只用一种方法就能够解出来的,往往是同时用到两三种甚至更多才能顺利解答。这就需要考生平时多想多练,做到熟能生巧,才能在最后的考试决战中胜人一筹。

【精品阅读】
高数大题级数难点规划
概率论部分复习全规划
过来人教你如何死磕考研数学
一站式解决考研数学难题

2023考研数学:绝技一朝在手,极限永远不愁

    关于作者: admin

    这里可以再内容模板定义一些文字和说明,也可以调用对应作者的简介!或者做一些网站的描述之类的文字活着HTML!

    为您推荐

    发表评论

    电子邮件地址不会被公开。 必填项已用*标注

    评论列表 人参与

    联系我们

    联系我们

    8888-88888888

    在线咨询: QQ交谈

    邮箱: email@admin.com

    工作时间:周一至周五,9:00-17:30,节假日休息

    关注微信
    微信扫一扫关注我们

    微信扫一扫关注我们

    关注微博
    返回顶部