摘要:高数是2021考研数学复习的重要部分,明确考察点,有针对性地进行复习,会取得事半功倍的效果。帮帮为大家整理了2021考研数学高数部分的考察点,供大家参考。以下是一元函数微分学的考察点。
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3.了解高阶导数的概念,会求简单函数的高阶导数。
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数。
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理。
6.掌握用洛必达法则求未定式极限的方法。
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。
8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数。当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。
以上就是帮帮为大家整理的“2021考研高数的一元函数微分学考察点”
干货:2023考研高数的一元函数微分学考察点
干货:2023考研高数的一元函数微分学考察点
摘要:高数是2021考研数学复习的重要部分,明确考察点,有针对性地进行复习,会取得事半功倍的效果。帮…
干货:2023考研高数的一元函数微分学考察点
评论列表 人参与