2022考研数学复习指导:常用诱导公式总结

2022考研数学复习指导:常用诱导公式总结


  对于2022考研数学备考的学生来说,公式部分的内容我们要着重掌握,因为大多数题型都会涉及到。为此,考研频道小编整理…

2022考研数学复习指导:常用诱导公式总结

  对于2022考研数学备考的学生来说,公式部分的内容我们要着重掌握,因为大多数题型都会涉及到。为此,考研频道小编整理了“2022考研数学复习指导:常用诱导公式总结”的相关内容,希望对大家有所帮助。

  一、常用诱导公式

  公式一:

  设&alpha为任意角,终边相同的角的同一三角函数的值相等:

  sin(2k&pi+&alpha)=sin&alpha(k&isinZ)

  cos(2k&pi+&alpha)=cos&alpha(k&isinZ)

  tan(2k&pi+&alpha)=tan&alpha(k&isinZ)

  cot(2k&pi+&alpha)=cot&alpha(k&isinZ)

  公式二:

  设&alpha为任意角,&pi+&alpha的三角函数值与&alpha的三角函数值之间的关系:

  sin(&pi+&alpha)=-sin&alpha

  cos(&pi+&alpha)=-cos&alpha

  tan(&pi+&alpha)=tan&alpha

  cot(&pi+&alpha)=cot&alpha

  公式三:

  任意角&alpha与-&alpha的三角函数值之间的关系:

  sin(-&alpha)=-sin&alpha

  cos(-&alpha)=cos&alpha

  tan(-&alpha)=-tan&alpha

  cot(-&alpha)=-cot&alpha

  公式四:

  利用公式二和公式三可以得到&pi-&alpha与&alpha的三角函数值之间的关系:

  sin(&pi-&alpha)=sin&alpha

  cos(&pi-&alpha)=-cos&alpha

  tan(&pi-&alpha)=-tan&alpha

  cot(&pi-&alpha)=-cot&alpha

  公式五:

  利用公式一和公式三可以得到2&pi-&alpha与&alpha的三角函数值之间的关系:

  sin(2&pi-&alpha)=-sin&alpha

  cos(2&pi-&alpha)=cos&alpha

  tan(2&pi-&alpha)=-tan&alpha

  cot(2&pi-&alpha)=-cot&alpha

  公式六:

  &pi/2±&alpha及3&pi/2±&alpha与&alpha的三角函数值之间的关系:

  sin(&pi/2+&alpha)=cos&alpha

  cos(&pi/2+&alpha)=-sin&alpha

  tan(&pi/2+&alpha)=-cot&alpha

  cot(&pi/2+&alpha)=-tan&alpha

  sin(&pi/2-&alpha)=cos&alpha

  cos(&pi/2-&alpha)=sin&alpha

  tan(&pi/2-&alpha)=cot&alpha

  cot(&pi/2-&alpha)=tan&alpha

  sin(3&pi/2+&alpha)=-cos&alpha

  cos(3&pi/2+&alpha)=sin&alpha

  tan(3&pi/2+&alpha)=-cot&alpha

  cot(3&pi/2+&alpha)=-tan&alpha

  sin(3&pi/2-&alpha)=-cos&alpha

  cos(3&pi/2-&alpha)=-sin&alpha

  tan(3&pi/2-&alpha)=cot&alpha

  cot(3&pi/2-&alpha)=tan&alpha

  (以上k&isinZ)

  注意:在做题时,将a看成锐角来做会比较好做。

  诱导公式记忆口诀:

  上面这些诱导公式可以概括为:

  对于&pi/2k±&alpha(k&isinZ)的三角函数值,

  ①当k是偶数时,得到&alpha的同名函数值,即函数名不改变

  ②当k是奇数时,得到&alpha相应的余函数值,即sin&rarrcoscos&rarrsintan&rarrcot,cot&rarrtan.

  (奇变偶不变)

  然后在前面加上把&alpha看成锐角时原函数值的符号。

  (符号看象限)

  例如:

  sin(2&pi-&alpha)=sin(4·&pi/2-&alpha),k=4为偶数,所以取sin&alpha。

  当&alpha是锐角时,2&pi-&alpha&isin(270°,360°),sin(2&pi-&alpha)<0,符号为“-”。

  所以sin(2&pi-&alpha)=-sin&alpha

  上述的记忆口诀是:

  奇变偶不变,符号看象限。

  公式右边的符号为把&alpha视为锐角时,角k·360°+&alpha(k&isinZ),-&alpha、180°±&alpha,360°-&alpha

  所在象限的原三角函数值的符号可记忆

  水平诱导名不变符号看象限。

  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正二正弦(余割)三两切四余弦(正割)”.

  这十二字口诀的意思就是说:

  第一象限内任何一个角的四种三角函数值都是“+”

  第二象限内只有正弦是“+”,其余全部是“-”

  第三象限内切函数是“+”,弦函数是“-”

  第四象限内只有余弦是“+”,其余全部是“-”.

  上述记忆口诀,一全正,二正弦,三内切,四余弦

  还有一种按照函数类型分象限定正负:

  函数类型第一象限第二象限第三象限第四象限

  正弦...........+............+............&mdash............&mdash........

  余弦...........+............&mdash............&mdash............+........

  正切...........+............&mdash............+............&mdash........

  余切...........+............&mdash............+............&mdash........

  以上就是考研频道小编整理的“2022考研数学复习指导:常用诱导公式总结”相关介绍,数学这么严谨的学科,对于基础的要求十分严格,所以在考研数学备考基础阶段,同学们一定要打牢基础,切勿走入误区!如果您还想了解考研数学的其他问题,欢迎关注考研数学频道。


2022考研数学复习指导:常用诱导公式总结

    关于作者: admin

    这里可以再内容模板定义一些文字和说明,也可以调用对应作者的简介!或者做一些网站的描述之类的文字活着HTML!

    为您推荐

    发表评论

    电子邮件地址不会被公开。 必填项已用*标注

    评论列表 人参与

    联系我们

    联系我们

    8888-88888888

    在线咨询: QQ交谈

    邮箱: email@admin.com

    工作时间:周一至周五,9:00-17:30,节假日休息

    关注微信
    微信扫一扫关注我们

    微信扫一扫关注我们

    关注微博
    返回顶部